Titanium(IV) compounds with cyano ligands: crystal structures of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ and $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}^{1}$

Ulf Thewalt *, Wolfgang Nuding
Seksion für Röntgen- und Elektronenbeugung der Universität Ulm, D-89069 Ulm, Germany

Received 19 June 1995; in revised form 6 September 1995

Abstract

The reaction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ with KCN in methanol, that contains some water, gives the dinuclear oxo-bridged cyano complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}$ (2). The structure of 2 , as well as the structure of the known mononuclear complex $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ (1), was determined by X -ray crystallography. 1 crystallizes in the monoclinic space group $P 2_{1} / n$ with $Z=4$ and unit cell dimensions $a=7.879(2), b=12.235(3), c=12.078(3) \AA, \beta=107.58(3)^{\circ}$ and 2 crystallizes in the monoclinic space group $C 2 / c$ with $Z=4$ and cell dimensions $a=13.354(11), b=8.112(5), c=18.017(19) \AA, \beta=92.52(10)^{\circ}$.

Keywords: Titanium; Cyanide; Crystal structure; Cyclopentadienyl; Oxo-bridge; Metallocenes

1. Introduction

Whereas the pseudohalogenide complexes $\mathrm{Cp}_{2} \mathrm{TiX}_{2}$ with $\mathrm{X}^{-}=\mathrm{SCN}^{-}, \mathrm{OCN}^{-}$or N_{3}^{-}can easily be prepared [1], the corresponding dicyano derivative $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})_{2}$ has not previously been prepared. The lack of electron density at the $\mathrm{d}^{\circ} \mathrm{Ti}^{\text {IV }}$ center precludes any possible stabilisation of the $\mathrm{Ti}-\mathrm{CN}$ bonds via back-donation. The earliest attempt to prepare $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})_{2}$ was that of Pink in 1958 [2] who reacted $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and KCN in chloroform/methanol. He observed that only one Cl^{-} could be replaced by CN^{-}. Since then, several reports of the synthesis of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN}) \mathrm{X}$-type compounds have appeared. Some data for $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN}) \mathrm{Cl}$ are given in a patent [3]. Recently, Moran and Fernandez [4,5] reported the preparation of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN}) \mathrm{X}$ with $\mathrm{X}^{-}=\mathrm{Br}^{-}$, $\mathrm{I}^{-}, \mathrm{NCS}^{-}$, and NCSe^{-}. These complexes were obtained by oxidative additions of the pseudohalogens XCN to $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$. Nesmeyanov et al. [6] found that the methanolate $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ forms in the reaction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ with KCN in methanol.

Evidently, a π-donor ligand X in $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN}) \mathrm{X}$ induces a stabilisation of the $\mathrm{Ti}-\mathrm{CN}$ bond through enhancement of the elctron density at titanium. We report

[^0]here the preparation of the dinuclear oxo-bridged complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}(2)$, its structure, and the X-ray structure of the known $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)(1)$.

2. Results and discussion

The reaction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and KCN in a methanol/ chloroform mixture proceeds with the formation of a yellow solutions of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ (1) within less than 1 h at room temperature [2]. This compound can also be prepared in boiling methanol [6]. Attempts to prepare an ethoxy or phenoxy analog of 1 in solutions of ethanol / chloroform or phenol / chloroform were unsuccessful. When this reaction is repeated in the presence of small amounts of water, the corresponding oxo-bridged complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}$ (2) is obtained (Eq. (1)). Depending on the relative amount of water, only crystals of $\mathbf{2}$ or mixtures of yellow crystals of $\mathbf{1}$ and orange crystals of 2 can be isolated.
$2 \mathrm{Cp}_{2} \mathrm{TiCl}_{2}+\mathrm{H}_{2} \mathrm{O}+4 \mathrm{KCN}$

It is well known that oxo-bridged dinuclear complexes are formed in the reaction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ with alkali-metal salts $\mathrm{MX}\left(\mathrm{M}=\mathrm{Na}, \mathrm{K} ; \mathrm{X}^{-}=\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}^{-}\right.$,

Fig. 1. Molecular structure and atom numbering scheme of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ (1).
$0.5 \mathrm{~S}_{2} \mathrm{O}_{6}^{2-}$) in aqueous solutions [7,8]. 2 cannot be prepared by this method, because first the high pH of an aqueous KCN solution leads to a cleavage of the $\mathrm{Ti}-\mathrm{Cp}$ bonds [9] and second, even if an oxo-bridged species is formed, it would probably be of the following type with $\mathrm{H}_{2} \mathrm{O}$ instead of CN^{-}ligands at the Ti atoms [8]:

The IR spectrum of 2 shows a very strong absorption band at $741 \mathrm{~cm}^{-1}$. This band is characteristic for titanium(IV) compounds with a $\mathrm{Cp}_{2} \mathrm{Ti}-\mathrm{O}-\mathrm{TiCp}_{2}$ unit [7]. It should be mentioned here that 2 has been proposed by Coutts and Wailes [10] to be the yellow product that forms during the decomposition of the Ti^{111} complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{n}$ by air. Their conclusion was based upon the observation of " a strong band in the infrared around $720 \mathrm{~cm}^{-1}$ '.

The molecular structures of $\mathbf{1}$ and 2 are shown in Figs. 1 and 2. Crystallographic data are listed in Table 1. Distances and angles are listed in Table 2. The geometry of 2 is constrained by crystallographic C_{2} symmetry. In Table 3 the essential structural parameters of both compounds are tabulated, together with those of related complexes. Comparison of the data indicates that the structures of the $\mathrm{Cp}_{2} \mathrm{Ti}^{\mathrm{IV}}$ unit in complexes with and without CN ligands are comparable. The $\mathrm{Ti}-\mathrm{CN}$

Fig. 2. Molecular structure and atom numbering scheme of $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}$ (2).

Table 1
Cystallographic data for $\mathbf{1}$ and 2

	1	2
Formula	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOTi}$	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OTi}_{2}$
Fw	235.12	424.17
Crystal system	monoclinic	monoclinic
Space group	$P 21 / n$	C2/c
$a(\AA)$	7.879(2)	13.354(11)
$b(\AA)$	12.235(3)	8.112(5)
$c(\AA)$	12.078(3)	18.017(19)
$\beta\left({ }^{\circ}\right.$)	107.58(3)	92.52(10)
Z	4	4
$D_{\text {obsd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.41	1.45
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.407	1.445
μ (Mo K α) (cm^{-1})	6.8	7.7
Crystal dimensions (mm)	0.4, 0.5, 0.8	$0.5,0.5,0.5$
Data collection and refinement		
$h k l$ range	$\begin{aligned} & -9 /+9,0 /+15 \\ & 0 /+14 \end{aligned}$	$\begin{aligned} & -14 /+14,0 /+8 \\ & 0 /+19 \end{aligned}$
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	50	45
Unique reflections	2166	1438
Observed reflections $\left(F_{\mathrm{o}} \geqslant 2 \sigma\left(F_{\mathrm{o}}\right)\right.$	1992	1302
Parameters refined	138	127
R	0.040	0.043
$R_{\mu}(F)$	0.048	0.053
Residual density $\left(\mathrm{e}^{-3}\right)$	0.39	0.53

bonds of $2.164(3)$ and $2.162(3) \AA$ in $\mathbf{1}$ and 2 respectively are slightly longer than those in the titanium(III) complex $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{4}(2.13 \AA)$, which contains bridging CN groups [15], and slightly shorter than the Ti-C σ bonds in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{CH}_{3}\right)_{2}(2.170(2)$ and $2.181(2) \AA)$ [16]. The Ti-C -N bond angles of $\mathbf{1}$ and $\mathbf{2}$ are almost linear (176.3(2) and $177.9(3)^{\circ}$ respectively) and the $\mathrm{C}-\mathrm{N}$ bond lengths of $1.150(4)$ and $1.144(5) \AA$ are typical for a CN triple bond. As in other dinuclear oxo-bridged titanium compounds, the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ fragment in 2 is nearly linear. This indicates additional

Table 2
Selected distances (\AA) and angles $\left(^{\circ}\right)$ for 1 and $2^{\text {a }}$

Atoms	1	2
$\mathrm{Ti}-\mathrm{C}(\mathrm{Cp})$	$2.356(3)-2.414(4)$	$2.356(4)-2.423(4)$
$\mathrm{Ti}-\mathrm{C}(11)$	$2.164(3)$	$2.162(3)$
$\mathrm{Ti}-\mathrm{O}(1)$	$1.835(2)$	$1.840(2)$
$\mathrm{Ti}-\mathrm{Cp}(1)$	2.07	2.07
$\mathrm{Ti}-\mathrm{Cp}(2)$	2.09	2.08
$\mathrm{~N}(1)-\mathrm{C}(11)$	$1.150(4)$	$1.144(5)$
$\mathrm{O}(1)-\mathrm{C}(12)$	$1.407(4)$	-
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{C}(11)$	$91.5(1)$	$93.7(2)$
$\mathrm{Cp}(1)-\mathrm{Ti}(1)-\mathrm{Cp}(2)$	132.0	133.0
$\mathrm{Ti}(1)-\mathrm{C}(11)-\mathrm{N}(1)$	$176.3(2)$	$177.9(3)$
$\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{C}(12)$	$140.1(2)$	-
$\mathrm{Ti}(1)-\mathrm{O}(1)-\mathrm{Ti}\left(1^{\prime}\right)$	-	$174.3(2)$

${ }^{\text {a }} \mathrm{Cp}(1)$ and $\mathrm{Cp}(2)$: centroids of the Cp rings containing $\mathrm{C}(1)-\mathrm{C}(5)$
and $\mathrm{C}(6)-\mathrm{C}(10)$ respectively.
π-bonding of the oxygen atom to the two titanium centers [14,17]. As Fig. 2 shows, the two $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN}) \mathrm{O}$ units of a $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}$ molecule are rotated against each other around their $\mathrm{Ti}-\mathrm{O}$ vectors. The rotation (measured by the $\mathrm{C} 11-\mathrm{Ti}-\mathrm{Ti} 1^{\prime}-\mathrm{C} 11^{\prime}$ dihedral angle) is $106.6(2)^{\circ}$.

The importance of $\mathrm{Ti}-\mathrm{O} \pi$-bonding in organotitanium(IV) alkoxides has been emphasized by Caulton and coworkers [12]. They proposed that the alkoxy ligand in $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{OEt}) \mathrm{Cl}$ donates three electrons ($\mathrm{Ti} \Longleftarrow \mathrm{OR}$) resulting in an effective 18 -electron configuration for the titanium atom. A comparison of the structural parameters of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{OEt}) \mathrm{Cl}$ with those of related compounds such as $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ indicates that alkoxide exceeds chloride in π-donor ability. The structure determination of 1 provides an opportunity to evaluate the extent to which the $\mathrm{Ti}-\mathrm{O}$ and $\mathrm{Ti}-\mathrm{Cp}$ distances in $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{OR}) \mathrm{X}$-type compounds are influenced by the presence of a π-acceptor $\left(\mathrm{CN}^{-}\right)$and π-donor $\left(\mathrm{Cl}^{-}\right)$ ligand respectively. As Table 3 shows, the $\mathrm{Ti}-\mathrm{Cp}$ distances are the same for 1 and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$. The $\mathrm{Ti}-\mathrm{O}$ distances are different, however. For 1 the $\mathrm{Ti}-\mathrm{O}$ distance is $0.020 \AA$ shorter than for $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$. Therefore, we conclude that the degree of π-donation of the alkoxy ligand in $\mathbf{1}$ is higher than in $\mathrm{Cp}_{2} \mathrm{Ti}-$ $\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$. The corresponding relatively high electron density at the metal atom of $\mathbf{1}$ is suggested to be available for back-donation to the cyanide ligand and thus to be responsible for the existence and high stability of 1 .

3. Experimental details

Methanol was distilled from magnesium turnings. CHCl_{3} was dried by refluxing over phosphorus(V) ox-
ide. $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ and KCN were stored over CaCl_{2}. Mass spectra were recorded on a Varian MAT 711 spectrometer. IR spectra were performed on a Mattson Galaxy 2020 FTIR instrument, and UV-visible spectra on a Hitachi V-2000 spectrometer.

3.1. Preparation of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right)$ (1)

The method is essentially that of Pink [2] with the exception that an inert gas atmosphere was used. To a stirred solution of $2.50 \mathrm{~g} \mathrm{Cp}_{2} \mathrm{TiCl}_{2}(10 \mathrm{mmol})$ in dry CHCl_{3} at room temperature, 100 ml of absolute methanol and 2.50 g KCN (19 mmol) were added. Within 1 h the color changed from red to yellow. The solvents were removed by distillation under reduced pressure. The solid residue was treated with CHCl_{3} and the filtered solution was layered with n-pentane. Clear yellow crystals of 1 grew after some days in a refrigerator. The yield was $0.72 \mathrm{~g}(31 \%)$. Anal. Found: C, 61.22; H, 5.51 ; N, $5.81 \% \mathrm{C}_{12} \mathrm{H}_{13}$ NOTi. Calc.: C, 61.30 ; H, 5.57; N, 5.96.

The crystals are stable for several days in air, soluble in CHCl_{3}, THF and methanol, and almost insoluble in n-pentane. Heating causes decomposition above $160^{\circ} \mathrm{C}$ without melting (m.p. according to Ref. [6]: 164.5-166 ${ }^{\circ} \mathrm{C}$).

MS m / z (\%): 235 (47.0) $\mathrm{M}^{+}, 220$ (5.6), 204 (6.0) $\left[\mathrm{Cp}_{2} \mathrm{TiCN}\right]^{+}, 178(9.6)\left[\mathrm{Cp}_{2} \mathrm{Ti}^{+}, 170(17.0), 144(100.0)\right.$ $\left[^{[\mathrm{CpTiOMe}}{ }^{+}, 129(36.0), 113(84.8)[\mathrm{CpTi}]^{+}, 86(11.0)\right.$, 74 (10.0), 65 (10.6), 64 (25.5), 48 (4.0), 39 (19.3), 31 (2.6).

IR (KBr-pellet, cm^{-1}): 3100(m), 3095(m), 2936(w), $2911(\mathrm{~m}), \quad 2868(\mathrm{~m}), \quad 2124(\mathrm{~m}), \quad 1455(\mathrm{~m}), \quad 1439(\mathrm{~m})$, 1422(m), 1366(m), 1088(s), 1065(s), 1030(m), 855(m), 822(s), 544(s), 428(s).

UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right)$: maxima at 256 and 388 .

Table 3
Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ in 1,2 , and related $\mathrm{Cp}_{2} \mathrm{TiXY}$ compounds

Compound	$\mathrm{Ti}-\mathrm{CN}$	Ti-Cp	$\begin{aligned} & \mathrm{Ti}-\mathrm{OR} \text { or } \\ & \mathrm{Ti}-\mathrm{OTi} \end{aligned}$	$\mathrm{Cp}-\mathrm{Ti}-\mathrm{Cp}^{\prime}$	$\mathrm{X}-\mathrm{Ti}-\mathrm{Y}$	$\begin{aligned} & \mathrm{Ti}-\mathrm{O}-\mathrm{C} \text { or } \\ & \mathrm{Ti}-\mathrm{O}-\mathrm{Ti} \end{aligned}$	Ref.
Mononuclear compounds							
$\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\left(\mathrm{OCH}_{3}\right) \mathbf{1}$	$2.164(2)$	2.07	1.835(2)	132.0	91.5(2)	140.1(2)	
		2.09					
$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$	-	2.06	-	130.9	94.5	-	[11]
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{Cl}$	-	2.08	1.855(2)	130.5	93.1(1)	133.2(2)	[12]
		2.09					
Oxo-bridged compounds							
$\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O} 2$	$2.162(3)$	2.07	1.840 (2)	133.0	93.7(1)	174.3(1)	
		2.08					
$\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{NO}_{3}\right)\right]_{2} \mathrm{O}$	-	2.07	1.841(5)	131.4	87.9	171.8(3)	[13]
		2.08	$1.829(5)$	131.8	88.9		
$\left[\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right]_{2} \mathrm{O}$	-	2.11	$1.840(3)$	127.3	91.2(2)	173.7(2)	[14]
		2.12	1.838(3)	129.3	91.2(2)		

$\overline{\mathrm{Cp}, \mathrm{Cp}^{\prime} \text { centroids of cyclopentadienyl rings. }}$

Table 4
Atomic parameters for 1

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Ti}(1)$	$0.30504(5)$	$0.22312(3)$	$0.47491(3)$	$0.030(1)$
$\mathrm{C}(1)$	$0.0078(4)$	$0.2708(2)$	$0.4688(4)$	$0.066(2)$
$\mathrm{C}(2)$	$0.1234(5)$	$0.3226(3)$	$0.5644(3)$	$0.066(2)$
$\mathrm{C}(3)$	$0.2241(4)$	$0.3971(2)$	$0.5257(3)$	$0.063(2)$
$\mathrm{C}(4)$	$0.1676(4)$	$0.3949(2)$	$0.4046(3)$	$0.065(2)$
$\mathrm{C}(5)$	$0.0362(4)$	$0.3160(3)$	$0.3683(3)$	$0.068(2)$
$\mathrm{C}(6)$	$0.6212(4)$	$0.2058(4)$	$0.5570(3)$	$0.081(2)$
$\mathrm{C}(7)$	$0.5842(4)$	$0.3121(3)$	$0.5191(3)$	$0.068(2)$
$\mathrm{C}(8)$	$0.5213(4)$	$0.3107(3)$	$0.4004(3)$	$0.061(2)$
$\mathrm{C}(9)$	$0.5126(4)$	$0.2026(3)$	$0.3646(3)$	$0.070(2)$
$\mathrm{C}(10)$	$0.5741(4)$	$0.1391(2)$	$0.4642(4)$	$0.079(2)$
$\mathrm{C}(11)$	$0.1761(3)$	$0.1095(2)$	$0.3381(2)$	$0.041(1)$
$\mathrm{C}(12)$	$0.1953(3)$	$0.0705(2)$	$0.6411(2)$	$0.054(1)$
$\mathrm{N}(1)$	$0.1118(3)$	$0.0446(2)$	$0.2693(2)$	$0.058(1)$
$\mathrm{O}(1)$	$0.3100(2)$	$0.1208(1)$	$0.5870(1)$	$0.041(1)$

3.2. Preparation of $\left[\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CN})\right]_{2} \mathrm{O}$ (2)

The reaction steps of Section 3.1 were repeated. The reaction was carried out in methanol containing 2% water, however, and the reaction was conducted in air. Orange crystals of 2 were obtained after layering the CHCl_{3} filtrate with n-pentane. Yield $0.96 \mathrm{~g}(46 \%)$. Anal. Found: C, 61.94; H, 4.72; N, 6.52\%. $\mathrm{C}_{22} \mathrm{H}_{20^{-}}$ $\mathrm{N}_{2} \mathrm{OTi}_{2}$. Calc.: C, $62.30 ; \mathrm{H}, 4.75 ; \mathrm{N}, 6.60$. The crystals are stable for days in air, slightly soluble in CHCl_{3}, THF and methanol, and almost insoluble in n-pentane. Heating causes decomposition above $170{ }^{\circ} \mathrm{C}$ without melting.

MS m / z (\%): 612 (5.8), 408 (7.8), 382 (9.6), 359 (44.0), 333 (2.4), 294 (8.7), 268 (3.5), 204 (17.4), 178 (100) $\left[\mathrm{Cp}_{2} \mathrm{Ti}^{+}, 139\right.$ (7.1), 113 (17.6), 66 (21.6), 65 (24.2), 39 (25.5), 27 (37.1).

IR (KBr-pellet, cm^{-1}): 3096(s), 2124(m), 1439(s), 1364(m), 1022(s), 872(s), 839(s), 816(s), 741(vs), 600(m), 434(s).

UV-vis $\left(\mathrm{CHCl}_{3}, \mathrm{~nm}\right)$: maxima at 391 and 434.

Table 5
Atomic parameters for 2

Atom	x	y	z	$U_{\text {eq }}$
$\mathrm{Ti}(1)$	$0.55320(3)$	$0.32271(6)$	$0.15763(2)$	$0.027(1)$
$\mathrm{C}(1)$	$0.6350(3)$	$0.5804(4)$	$0.1293(2)$	$0.059(2)$
$\mathrm{C}(2)$	$0.6922(4)$	$0.4493(9)$	$0.1014(3)$	$0.067(3)$
$\mathrm{C}(3)$	$0.7291(2)$	$0.3562(5)$	$0.1629(2)$	$0.053(2)$
$\mathrm{C}(4)$	$0.6941(2)$	$0.4295(4)$	$0.2264(2)$	$0.048(2)$
$\mathrm{C}(5)$	$0.6360(3)$	$0.5650(4)$	$0.2057(2)$	$0.053(2)$
$\mathrm{C}(6)$	$0.4487(3)$	$0.1543(6)$	$0.0759(3)$	$0.079(3)$
$\mathrm{C}(7)$	$0.5432(4)$	$0.1688(4)$	$0.0446(2)$	$0.077(3)$
$\mathrm{C}(8)$	$0.6095(3)$	$0.0860(5)$	$0.0944(3)$	$0.075(3)$
$\mathrm{C}(9)$	$0.5550(4)$	$0.0324(5)$	$0.1523(2)$	$0.071(3)$
$\mathrm{C}(10)$	$0.4606(4)$	$0.0719(6)$	$0.1403(3)$	$0.077(3)$
$\mathrm{C}(11)$	$0.4356(2)$	$0.4818(4)$	$0.1128(2)$	$0.044(2)$
$\mathrm{N}(1)$	$0.3714(2)$	$0.5638(4)$	$0.0905(2)$	$0.068(2)$
$\mathrm{O}(1)$	0.5	$0.3115(3)$	0.25	$0.030(2)$

3.3. X-ray analyses of 1 and 2

Crystals were mounted on glass fibers. The X-ray measurements were carried out at room temperature on a Philips PW1100 diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71069 \AA)$. The structures were solved by the Patterson method and refined via standard least-squares and Fourier techniques [18]. Crystal data, data collection parameters and refinement details are listed in Table 1. Hydrogen atoms were included for the F_{c} calculations at their calculated positions. Atomic coordinates are given in Tables 4 and 5 [19].

Acknowledgements

The authors thank the Fonds der Chemischen Industrie for support of this work and Dr. H. Pink for supplying a copy of his Diplomarbeit.

References and note

[1] Gmelin Handbuch der Anorganischen Chemie; Titanorganische Verbindungen, Teil 2, Springer, 1980, pp. 248-256.
[2] H. Pink, Diplomarbeit, Ludwig-Maximilian-Universität München, 1958.
[3] K.L. McHugh and J.O. Smith, US Patent 3242 081, Monsanto Research Corp. 1963/1966.
[4] M. Moran and V. Fernandez, J. Organomet. Chem., 153 (1978) C4.
[5] M. Moran and V. Fernandez, J. Organomet. Chem., 165 (1979) 215.
[6] A.N. Nesmeyanov, O.V. Nogina and V.A. Dubovitskii, lzv. Akad. Nauk SSSR Ser. Khim., (1968) 527; Bull. Akad. Sci. USSR Div. Chem. Sci., (1968) 514.
[7] E. Samuel, Bull. Soc. Chim. France, (1966) 3548.
[8] U. Thewalt and G. Schleussner, Angew. Chem., 90 (1978) 559.
[9] K. Döppert, J. Organomet. Chem., 178 (1979) C3.
[10] R. Coutts and P.C. Wailes, Inorg. Nucl. Chem. Lett., 3 (1967) 1.
[11] A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal and I. Bernal, Can. J. Chem., 53 (1975) 1622.
[12] J.C. Huffman, K.G. Moloy, J.A. Marsella and K.G. Caulton, J. Am. Chem. Soc., 102 (1980) 3009.
[13] U. Thewalt and H.-P. Klein, Z. Anorg. Allg. Chem., 479 (1981) 113.
[14] H.G. Alt, K.-H. Schwind, M.D. Rausch and U. Thewalt, J. Organomet. Chem., 349 (1988) C7.
[15] P. Schinnerling and U. Thewalt, J. Organomet. Chem., 431 (1992) 41.
[16] U. Thewalt and T. Wöhrle, J. Organomet. Chem., 464 (1994) C17.
[17] B. Honold, U. Thewalt, M. Herberhold, H.G. Alt, L.B. Kool and M.D. Rausch, J. Organomet. Chem., 314 (1986) 105.
[18] G.M. Sheldrick, SHELX-76 Program for Crystal Structure Determination, University of Cambridge, Cambridge, UK, 1976.
[19] Further details concerning the crystal structure analyses are available upon request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH , D-76012 Karlsruhe by quoting the depository number CSD-58524, the name of the authors and the journal citation.

[^0]: * Corresponding author
 ${ }^{1}$ Dedicated to Professor M.D. Rausch on the occasion of his sixty-fifth birthday.

