

Journal of Organometallic Chemistry 512 (1996) 127-130

Titanium(IV) compounds with cyano ligands: crystal structures of $Cp_2Ti(CN)(OCH_3)$ and $[Cp_2Ti(CN)]_2O^{-1}$

Ulf Thewalt *, Wolfgang Nuding

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, D-89069 Ulm, Germany

Received 19 June 1995; in revised form 6 September 1995

Abstract

The reaction of Cp₂TiCl₂ with KCN in methanol, that contains some water, gives the dinuclear oxo-bridged cyano complex $[Cp_2Ti(CN)]_2O$ (2). The structure of 2, as well as the structure of the known mononuclear complex $Cp_2Ti(CN)(OCH_3)$ (1), was determined by X-ray crystallography. 1 crystallizes in the monoclinic space group $P2_1/n$ with Z = 4 and unit cell dimensions a = 7.879(2), b = 12.235(3), c = 12.078(3) Å, $\beta = 107.58(3)^\circ$ and 2 crystallizes in the monoclinic space group C2/c with Z = 4 and cell dimensions a = 13.354(11), b = 8.112(5), c = 18.017(19) Å, $\beta = 92.52(10)^\circ$.

Keywords: Titanium; Cyanide; Crystal structure; Cyclopentadienyl; Oxo-bridge; Metallocenes

1. Introduction

Whereas the pseudohalogenide complexes Cp₂TiX₂ with $X^- = SCN^-$, OCN^- or N_3^- can easily be prepared [1], the corresponding dicyano derivative $Cp_2Ti(CN)_2$ has not previously been prepared. The lack of electron density at the d° Ti^{IV} center precludes any possible stabilisation of the Ti-CN bonds via back-donation. The earliest attempt to prepare $Cp_2Ti(CN)_2$ was that of Pink in 1958 [2] who reacted Cp₂TiCl₂ and KCN in chloroform/methanol. He observed that only one Cl⁻ could be replaced by CN⁻. Since then, several reports of the synthesis of Cp₂Ti(CN)X-type compounds have appeared. Some data for Cp₂Ti(CN)Cl are given in a patent [3]. Recently, Moran and Fernandez [4,5] reported the preparation of $Cp_2Ti(CN)X$ with $X^- = Br^-$, I⁻, NCS⁻, and NCSe⁻. These complexes were obtained by oxidative additions of the pseudohalogens XCN to $Cp_2Ti(CO)_2$. Nesmeyanov et al. [6] found that the methanolate $Cp_2Ti(CN)(OCH_3)$ forms in the reaction of Cp₂TiCl₂ with KCN in methanol.

Evidently, a π -donor ligand X in Cp₂Ti(CN)X induces a stabilisation of the Ti–CN bond through enhancement of the elctron density at titanium. We report

0022-328X/96/\$15.00 $\tilde{\tilde{0}}$ 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05953-9

here the preparation of the dinuclear oxo-bridged complex $[Cp_2Ti(CN)]_2O$ (2), its structure, and the X-ray structure of the known $Cp_2Ti(CN)(OCH_3)$ (1).

2. Results and discussion

The reaction of Cp_2TiCl_2 and KCN in a methanol/ chloroform mixture proceeds with the formation of a yellow solutions of $Cp_2Ti(CN)(OCH_3)$ (1) within less than 1 h at room temperature [2]. This compound can also be prepared in boiling methanol [6]. Attempts to prepare an ethoxy or phenoxy analog of 1 in solutions of ethanol/chloroform or phenol/chloroform were unsuccessful. When this reaction is repeated in the presence of small amounts of water, the corresponding oxo-bridged complex $[Cp_2Ti(CN)]_2O$ (2) is obtained (Eq. (1)). Depending on the relative amount of water, only crystals of 2 or mixtures of yellow crystals of 1 and orange crystals of 2 can be isolated.

It is well known that oxo-bridged dinuclear complexes are formed in the reaction of Cp_2TiCl_2 with alkali-metal salts MX (M = Na, K; X⁻ = I⁻, Br⁻, NO₃⁻,

^{*} Corresponding author.

¹ Dedicated to Professor M.D. Rausch on the occasion of his sixty-fifth birthday.

Fig. 1. Molecular structure and atom numbering scheme of $Cp_2Ti(CN)(OCH_3)$ (1).

 $0.5S_2O_6^{2^-}$) in aqueous solutions [7,8]. **2** cannot be prepared by this method, because first the high pH of an aqueous KCN solution leads to a cleavage of the Ti-Cp bonds [9] and second, even if an oxo-bridged species is formed, it would probably be of the following type with H₂O instead of CN⁻ ligands at the Ti atoms [8]:

$$\begin{bmatrix} H_2O & H_2O \\ I & I \\ Cp_2Ti - O - TiCp_2 \end{bmatrix} X_2$$

The IR spectrum of **2** shows a very strong absorption band at 741 cm⁻¹. This band is characteristic for titanium(IV) compounds with a Cp₂Ti-O-TiCp₂ unit [7]. It should be mentioned here that **2** has been proposed by Coutts and Wailes [10] to be the yellow product that forms during the decomposition of the Ti^{III} complex $[Cp_2Ti(CN)]_n$ by air. Their conclusion was based upon the observation of "a strong band in the infrared around 720 cm⁻¹".

The molecular structures of 1 and 2 are shown in Figs. 1 and 2. Crystallographic data are listed in Table 1. Distances and angles are listed in Table 2. The geometry of 2 is constrained by crystallographic C_2 symmetry. In Table 3 the essential structural parameters of both compounds are tabulated, together with those of related complexes. Comparison of the data indicates that the structures of the C_2 Ti^{IV} unit in complexes with and without CN ligands are comparable. The Ti-CN

Fig. 2. Molecular structure and atom numbering scheme of $[Cp,Ti(CN)]_{2O}$ (2).

Table 1					
Cystallographic	data	for	1	and	2

	1	2
Formula	C ₁₂ H ₁₃ NOTi	C ₂₂ H ₂₀ N ₂ OTi ₂
Fw	235.12	424.17
Crystal system	monoclinic	monoclinic
Space group	$P2_1/n$	C2/c
a (Å)	7.879(2)	13.354(11)
b (Å)	12.235(3)	8.112(5)
c (Å)	12.078(3)	18.017(19)
β (°)	107.58(3)	92.52(10)
Z	4	4
$D_{\rm obsd} ({\rm g}{\rm cm}^{-3})$	1.41	1.45
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.407	1.445
μ (Mo K α) (cm ⁻¹)	6.8	7.7
Crystal dimensions (mm)	0.4, 0.5, 0.8	0.5, 0.5, 0.5
Data collection and ref	inement	
hkl range	-9/+9, 0/+15,	-14/+14, 0/+8,
	0/+14	0/+19
$2\theta_{max}$ (°)	50	45
Unique reflections	2166	1438
Observed reflections $(F_{0} \ge 2\sigma(F_{0}))$	1992	1302
Parameters refined	138	127
R	0.040	0.043
$R_w(F)$	0.048	0.053
Residual density (eÅ ⁻³)	0.39	0.53

bonds of 2.164(3) and 2.162(3) Å in 1 and 2 respectively are slightly longer than those in the titanium(III) complex $[Cp_2Ti(CN)]_4$ (2.13 Å), which contains bridging CN groups [15], and slightly shorter than the Ti-C σ bonds in $Cp_2Ti(CH_3)_2$ (2.170(2) and 2.181(2) Å) [16]. The Ti-C-N bond angles of 1 and 2 are almost linear (176.3(2)° and 177.9(3)° respectively) and the C-N bond lengths of 1.150(4) and 1.144(5) Å are typical for a CN triple bond. As in other dinuclear oxo-bridged titanium compounds, the Ti-O-Ti fragment in 2 is nearly linear. This indicates additional

Table 2 Selected distances (Å) and angles (°) for 1 and 2^{a}

,		
Atoms	1	2
Ti-C(Cp)	2.356(3)-2.414(4)	2.356(4)-2.423(4)
Ti - C(11)	2.164(3)	2.162(3)
Ti-O(1)	1.835(2)	1.840(2)
Ti-Cp(1)	2.07	2.07
Ti-Cp(2)	2.09	2.08
N(1) - C(11)	1.150(4)	1.144(5)
O(1)-C(12)	1.407(4)	-
O(1)-Ti(1)-C(11)	91.5(1)	93.7(2)
Cp(1) - Ti(1) - Cp(2)	132.0	133.0
Ti(1) - C(11) - N(1)	176.3(2)	177.9(3)
Ti(1) - O(1) - C(12)	140.1(2)	-
Ti(1) - O(1) - Ti(1')	-	174.3(2)

^a Cp(1) and Cp(2): centroids of the Cp rings containing C(1)-C(5) and C(6)-C(10) respectively.

129

 π -bonding of the oxygen atom to the two titanium centers [14,17]. As Fig. 2 shows, the two Cp₂Ti(CN)O units of a [Cp₂Ti(CN)]₂O molecule are rotated against each other around their Ti–O vectors. The rotation (measured by the C11–Ti–Ti1'–C11' dihedral angle) is 106.6(2)°.

The importance of Ti–O π -bonding in organotitanium(IV) alkoxides has been emphasized by Caulton and coworkers [12]. They proposed that the alkoxy ligand in Cp₂Ti(OEt)Cl donates three electrons (Ti ← OR) resulting in an effective 18-electron configuration for the titanium atom. A comparison of the structural parameters of Cp₂Ti(OEt)Cl with those of related compounds such as Cp₂TiCl₂ indicates that alkoxide exceeds chloride in π -donor ability. The structure determination of 1 provides an opportunity to evaluate the extent to which the Ti-O and Ti-Cp distances in Cp₂Ti(OR)X-type compounds are influenced by the presence of a π -acceptor (CN⁻) and π -donor (Cl⁻) ligand respectively. As Table 3 shows, the Ti-Cp distances are the same for 1 and $Cp_2Ti(OC_2H_5)Cl$. The Ti-O distances are different, however. For 1 the Ti-O distance is 0.020 Å shorter than for $Cp_2Ti(OC_2H_5)Cl$. Therefore, we conclude that the degree of π -donation of the alkoxy ligand in 1 is higher than in Cp₂Ti- $(OC_2H_5)Cl$. The corresponding relatively high electron density at the metal atom of 1 is suggested to be available for back-donation to the cyanide ligand and thus to be responsible for the existence and high stability of 1.

3. Experimental details

Methanol was distilled from magnesium turnings. CHCl₃ was dried by refluxing over phosphorus(V) oxide. Cp_2TiCl_2 and KCN were stored over $CaCl_2$. Mass spectra were recorded on a Varian MAT 711 spectrometer. IR spectra were performed on a Mattson Galaxy 2020 FTIR instrument, and UV-visible spectra on a Hitachi V-2000 spectrometer.

3.1. Preparation of $Cp_2Ti(CN)(OCH_3)$ (1)

The method is essentially that of Pink [2] with the exception that an inert gas atmosphere was used. To a stirred solution of 2.50 g Cp₂TiCl₂ (10 mmol) in dry CHCl₃ at room temperature, 100 ml of absolute methanol and 2.50 g KCN (19 mmol) were added. Within 1 h the color changed from red to yellow. The solvents were removed by distillation under reduced pressure. The solid residue was treated with CHCl₃ and the filtered solution was layered with *n*-pentane. Clear yellow crystals of 1 grew after some days in a refrigerator. The yield was 0.72 g (31%). Anal. Found: C, 61.22; H, 5.51; N, 5.81%. C₁₂H₁₃NOTi. Calc.: C, 61.30; H, 5.57; N, 5.96.

The crystals are stable for several days in air, soluble in CHCl₃, THF and methanol, and almost insoluble in *n*-pentane. Heating causes decomposition above 160 °C without melting (m.p. according to Ref. [6]: 164.5–166 °C).

MS m/z (%): 235 (47.0) M⁺, 220 (5.6), 204 (6.0) [Cp₂TiCN]⁺, 178 (9.6) [Cp₂Ti]⁺, 170 (17.0), 144 (100.0) [CpTiOMe]⁺, 129 (36.0), 113 (84.8) [CpTi]⁺, 86 (11.0), 74 (10.0), 65 (10.6), 64 (25.5), 48 (4.0), 39 (19.3), 31 (2.6).

IR (KBr-pellet, cm⁻¹): 3100(m), 3095(m), 2936(w), 2911(m), 2868(m), 2124(m), 1455(m), 1439(m), 1422(m), 1366(m), 1088(s), 1065(s), 1030(m), 855(m), 822(s), 544(s), 428(s).

UV-vis (CHCl₃, nm): maxima at 256 and 388.

Table 3 Selected distances (Å) and angles (°) in 1, 2, and related Cp_2TiXY compounds

Compound	Ti-CN	TiCp	Ti-OR or	CpTiCp'	X-Ti-Y	Ti-O-C or	Ref.
			Ti–OTi			Ti–O–Ti	
Mononuclear compound						· · · · · · · · · · · · · · · · · · ·	
Cp ₂ Ti(CN)(OCH ₃) 1	2.164(2)	2.07	1.835(2)	132.0	91.5(2)	140.1(2)	
••		2.09					
Cp ₂ TiCl ₂	-	2.06	-	130.9	94.5	-	[11]
Cp ₂ Ti(OC ₂ H ₃)Cl	-	2.08	1.855(2)	130.5	93.1(1)	133.2(2)	[12]
12 2 3		2.09					
Oxo-bridged compounds							
[Cp ₂ Ti(CN)] ₂ O 2	2.162(3)	2.07	1.840(2)	133.0	93.7(1)	174.3(1)	
		2.08					
$[Cp_2Ti(NO_3)]_2O$	_	2.07	1.841(5)	131.4	87.9	171.8(3)	[13]
		2.08	1.829(5)	131.8	88.9		
$[Cp_{2}Ti(C_{2}H_{3})]_{2}O$	-	2.11	1.840(3)	127.3	91.2(2)	173.7(2)	[14]
		2.12	1.838(3)	129.3	91.2(2)		

Cp, Cp' centroids of cyclopentadienyl rings.

Table 4 Atomic parameters for 1

Atom	x	у	z	$U_{ m eq}$
Ti(1)	0.30504(5)	0.22312(3)	0.47491(3)	0.030(1)
C(1)	0.0078(4)	0.2708(2)	0.4688(4)	0.066(2)
C(2)	0.1234(5)	0.3226(3)	0.5644(3)	0.066(2)
C(3)	0.2241(4)	0.3971(2)	0.5257(3)	0.063(2)
C(4)	0.1676(4)	0.3949(2)	0.4046(3)	0.065(2)
C(5)	0.0362(4)	0.3160(3)	0.3683(3)	0.068(2)
C(6)	0.6212(4)	0.2058(4)	0.5570(3)	0.081(2)
C(7)	0.5842(4)	0.3121(3)	0.5191(3)	0.068(2)
C(8)	0.5213(4)	0.3107(3)	0.4004(3)	0.061(2)
C(9)	0.5126(4)	0.2026(3)	0.3646(3)	0.070(2)
C(10)	0.5741(4)	0.1391(2)	0.4642(4)	0.079(2)
C(11)	0.1761(3)	0.1095(2)	0.3381(2)	0.041(1)
C(12)	0.1953(3)	0.0705(2)	0.6411(2)	0.054(1)
N(1)	0.1118(3)	0.0446(2)	0.2693(2)	0.058(1)
O(1)	0.3100(2)	0.1208(1)	0.5870(1)	0.041(1)

3.2. Preparation of $[Cp_2Ti(CN)]_2O(2)$

The reaction steps of Section 3.1 were repeated. The reaction was carried out in methanol containing 2% water, however, and the reaction was conducted in air. Orange crystals of **2** were obtained after layering the CHCl₃ filtrate with *n*-pentane. Yield 0.96 g (46%). Anal. Found: C, 61.94; H, 4.72; N, 6.52%. C₂₂H₂₀-N₂OTi₂. Calc.: C, 62.30; H, 4.75; N, 6.60. The crystals are stable for days in air, slightly soluble in CHCl₃, THF and methanol, and almost insoluble in *n*-pentane. Heating causes decomposition above 170 °C without melting.

MS m/z (%): 612 (5.8), 408 (7.8), 382 (9.6), 359 (44.0), 333 (2.4), 294 (8.7), 268 (3.5), 204 (17.4), 178 (100) [Cp₂Ti]⁺, 139 (7.1), 113 (17.6), 66 (21.6), 65 (24.2), 39 (25.5), 27 (37.1).

IR (KBr-pellet, cm^{-1}): 3096(s), 2124(m), 1439(s), 1364(m), 1022(s), 872(s), 839(s), 816(s), 741(vs), 600(m), 434(s).

UV-vis (CHCl₃, nm): maxima at 391 and 434.

Table 5 Atomic parameters for 2

Atom	x	у	z	U _{eq}
Ti(1)	0.55320(3)	0.32271(6)	0.15763(2)	0.027(1)
C(1)	0.6350(3)	0.5804(4)	0.1293(2)	0.059(2)
C(2)	0.6922(4)	0.4493(9)	0.1014(3)	0.067(3)
C(3)	0.7291(2)	0.3562(5)	0.1629(2)	0.053(2)
C(4)	0.6941(2)	0.4295(4)	0.2264(2)	0.048(2)
C(5)	0.6360(3)	0.5650(4)	0.2057(2)	0.053(2)
C(6)	0.4487(3)	0.1543(6)	0.0759(3)	0.079(3)
C(7)	0.5432(4)	0.1688(4)	0.0446(2)	0.077(3)
C(8)	0.6095(3)	0.0860(5)	0.0944(3)	0.075(3)
C(9)	0.5550(4)	0.0324(5)	0.1523(2)	0.071(3)
C(10)	0.4606(4)	0.0719(6)	0.1403(3)	0.077(3)
C(11)	0.4356(2)	0.4818(4)	0.1128(2)	0.044(2)
N(1)	0.3714(2)	0.5638(4)	0.0905(2)	0.068(2)
O(1)	0.5	0.3115(3)	0.25	0.030(2)

3.3. X-ray analyses of 1 and 2

Crystals were mounted on glass fibers. The X-ray measurements were carried out at room temperature on a Philips PW1100 diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71069$ Å). The structures were solved by the Patterson method and refined via standard least-squares and Fourier techniques [18]. Crystal data, data collection parameters and refinement details are listed in Table 1. Hydrogen atoms were included for the F_c calculations at their calculated positions. Atomic coordinates are given in Tables 4 and 5 [19].

Acknowledgements

The authors thank the Fonds der Chemischen Industrie for support of this work and Dr. H. Pink for supplying a copy of his Diplomarbeit.

References and note

- Gmelin Handbuch der Anorganischen Chemie; Titanorganische Verbindungen, Teil 2, Springer, 1980, pp. 248–256.
- [2] H. Pink, Diplomarbeit, Ludwig-Maximilian-Universität München, 1958.
- [3] K.L. McHugh and J.O. Smith, US Patent 3 242 081, Monsanto Research Corp. 1963/1966.
- [4] M. Moran and V. Fernandez, J. Organomet. Chem., 153 (1978) C4.
- [5] M. Moran and V. Fernandez, J. Organomet. Chem., 165 (1979) 215.
- [6] A.N. Nesmeyanov, O.V. Nogina and V.A. Dubovitskii, Izv. Akad. Nauk SSSR Ser. Khim., (1968) 527; Bull. Akad. Sci. USSR Div. Chem. Sci., (1968) 514.
- [7] E. Samuel, Bull. Soc. Chim. France, (1966) 3548.
- [8] U. Thewalt and G. Schleussner, Angew. Chem., 90 (1978) 559.
- [9] K. Döppert, J. Organomet. Chem., 178 (1979) C3.
- [10] R. Coutts and P.C. Wailes, *Inorg. Nucl. Chem. Lett.*, 3 (1967) 1.
- [11] A. Clearfield, D.K. Warner, C.H. Saldarriaga-Molina, R. Ropal and I. Bernal, Can. J. Chem., 53 (1975) 1622.
- [12] J.C. Huffman, K.G. Moloy, J.A. Marsella and K.G. Caulton, J. Am. Chem. Soc., 102 (1980) 3009.
- [13] U. Thewalt and H.-P. Klein, Z. Anorg. Allg. Chem., 479 (1981) 113.
- [14] H.G. Alt, K.-H. Schwind, M.D. Rausch and U. Thewalt, J. Organomet. Chem., 349 (1988) C7.
- [15] P. Schinnerling and U. Thewalt, J. Organomet. Chem., 431 (1992) 41.
- [16] U. Thewalt and T. Wöhrle, J. Organomet. Chem., 464 (1994) C17.
- [17] B. Honold, U. Thewalt, M. Herberhold, H.G. Alt, L.B. Kool and M.D. Rausch, J. Organomet. Chem., 314 (1986) 105.
- [18] G.M. Sheldrick, *SHELX-76* Program for Crystal Structure Determination, University of Cambridge, Cambridge, UK, 1976.
- [19] Further details concerning the crystal structure analyses are available upon request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76012 Karlsruhe by quoting the depository number CSD-58524, the name of the authors and the journal citation.